

OLED Manufacturing R&D

Priorities from April OLED Roundtable Meeting

David A Newman
Executive Vice President
Moser Baer Technologies, Inc.

DOE OLED SSL Roadmap

From July 2011 DOE SSL Manufacturing Roadmap:

FACTOR	UNITS	2012	2015	2020
Substrate Area	m ²	0.17	0.67	1.95
Substrate utilization	%	70	80	80
Yield of good panels	%	75	90	95
Equipment uptime	%	50	75	90
Cycle time	sec	120	30	20
Annual production	1000 m ²	12	380	2100
Equipment cost	\$M	60	150	250
Depreciation	\$/m²	1000	80	24

Materials	\$/m²	180	91	42
Depreciation	\$/m ²	1000	80	24
Labor	\$/m ²	400	40	10
Operations	\$/m²	120	24	8
Overhead	\$/m²	100	15	6
Total	\$/m²	1800	250	90
Total	\$/k lumen	180	25	9

2012 Reality Check

FACTOR	UNITS	2012	2015	2020
Materials	\$/m²	180	91	42
Depreciation	\$/m²	1000	80	24
Labor	\$/m²	400	40	10
Operations	\$/m²	120	24	8
Overhead	\$/m²	100	15	6
Total	\$/m²	1800	250	90
Total	\$/k lumen	180	25	9

Materials cost alone is currently > \$2000/m²

Cost Reduction - Materials

- Lower cost integrated substrate technology
- Target: $< $52/m^2$ by 2015

Lower cost encapsulation technology

< \$20/m² by 2015

Organic materials \$\$\$, better utilization

 $< $10/m^2$ by 2015

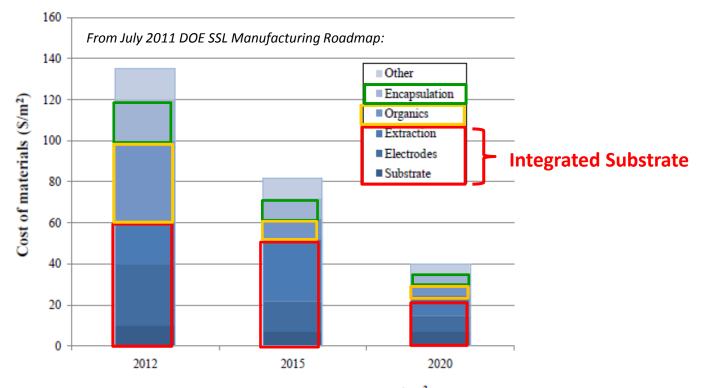


Figure 11. Cost of materials as deposited on processed substrates (\$/m²)

Source: Based on data provided by the 2011 Manufacturing Roundtable Attendees

Substrate Costs

Current Status:

Glass + TCO + Metal + Planarization (all patterned by photolithography/etch)

+ External light extraction film

Currently > \$1000/m²

Low cost integrated substrate technology needed:

Glass (soda lime): \$5/m²

Patterned TCO: \$15/m²

Target: $< $52/m^2$ by 2015

Grid Materials: \$15/m²

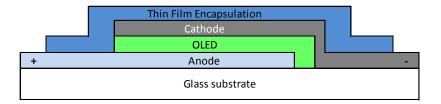
- Integrated Light Extraction: \$15/m²
- Low cost patterning techniques (printing, laser, etc.)

Encapsulation Costs

Current Status:

Cavity Glass + Edge seal + Desiccant

Currently $> $500/m^2$



Low cost encapsulation technology needed:

- Flat glass or metal + edge seal + desiccant
- Frit glass (laser seal)
- Thin film encapsulation

Target: < \$20/m² by 2015

Organics Cost

Current Status:

- Point sources or area sources, poor utilization < 10%
- Linear sources, 10-20% utilization
- Lower volumes = higher cost for organic materials

Currently > \$500/m²

Lower cost organic materials and better source technology needed:

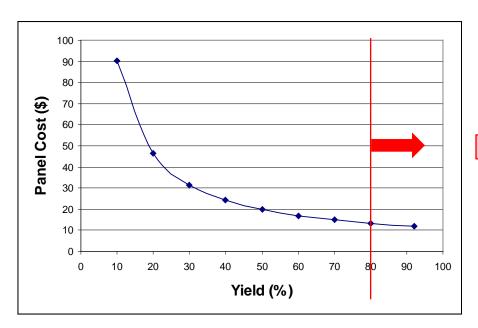
- Linear or area sources with > 50% utilization
- Higher volumes = lower costs, volume discounts (increased demand from OLED lighting and display makers)

Target: <\$10/m² by 2015

Roadmap

July 2011 SSL Manufacturing Roadmap Page 66

M.O3. OLED Materials Manufacturing: Support for the development of advanced manufacturing of low cost integrated substrates and encapsulation materials. Performers or partners should demonstrate a state of the art OLED lighting device using the materials contemplated under this task.


Metric(s)		2015 Target(s)		
Substrate	Total cost – dressed substrate	\$52/m ²		
	Transmission	>85%		
	Surface Roughness	Rrms < 2nm; Rpv < 20nm		
	Sheet Resistance	<10 ohms/square		
Encapsulation	Permeability of H ₂ O	$10^{-6} \text{ g/m}^2/\text{day}$		
	Permeability of O ₂	10 ⁻⁴ cc/m ² /day/atm		
	Cost	$10/m^2$		

Cost Reduction - Yield

Reduce cost of OLED lighting through yield improvement:

- Improve manufacturing tolerances in both production equipment and processes
- Implement robust quality control methods and tools to reduce non-yielded products and minimize the need for binning

Assumed yields from July 2011 DOE SSL Manufacturing Roadmap:

Factor	Units	2012	2015	2020
Substrate area	\mathbf{m}^2	0.17	0.67	1.95
Substrate utilization	%	70	80	80
Yield of good panels	%	75	90	95
Equipment uptime	%	50	75	90
Cycle time	s	120	30	20
Annual Production	1000 m^2	12	380	2100
Equipment cost	\$M	60	150	250
Depreciation	m^2	1000	80	24

DE-EE0005065 MBT/UDC - "Improving Product Yield of OLEDs"

Achieve >80% yield by 2014 Achieve >90% yield by 2015

Yield

Process Yield x Product Yield = Overall Yield

Process Yield

Target > 90%

- Broken/cracked panels
- Added defects fails inspection
- Out-of-control, fails process specifications:
 - Glass cleanliness
 - ILE/ELE quality, uniformity
 - TCO thickness, Rs, uniformity
 - Metal thickness, linewidth
 - Planarization quality
 - OLED deposition quality (thickness, composition, uniformity)
 - Encapsulation quality

Product Yield

Target > 90%

- Shorted panels
- Visual defects, darkspots, muras
- Back-end module assembly, electrical connection quality
- Out-of-spec performance fails product specifications:
 - Color quality (CCT, duv, CRI)
 - Color/brightness uniformity
 - Efficacy
 - Lifetime (lumen/color maintenance)

 Yield depends on product specifications!

Overall Yield Target > 80% $(0.9 \times 0.9 = 0.81)$

Summary

We think <u>yield</u> targets can be achieved. Moser Baer Technologies and Universal Display Corporation are working on this with funding assistance from project DE-EE0005065 MBT/UDC – "Improving Product Yield of OLEDs"

But: <u>cost</u> targets can't be met until progress is made on integrated substrate and encapsulation materials and processes, and until high volumes are achieved